VertEXmouon
L = Lo Y=Y o o o o 7 2
How to use it ? (Tutorial)

Paint settings

Sensors settings

Sensor's link

Collider settings
How to setup the sensor's layers
How to import paint data from a map
Normal correction

How to include VertExmotion in my custom Shader ?.........ccoeiiiiiimiiiiiiimiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeerenaeeaeees 13
How to include VertExmotion in Unity Shader Graph
How to include VertExmotion in Amplify Shader Editor
How to use the HDRP/Lit shader
How to include VertExmotion in Shader forge
How to include VertExmotion to Alloy
How to convert a complex shader
Tutorials for complex shaders

Preintegrated skin shader

UBER shader

Poiyomi Toon Shader
How to use the VertExmotion API

| |
What is VertExmotion?

VertExmotion is a shader based softbody system coupled with a procedural animation system.

You can easily animate parts of your mesh like hair, cloths, fatness... within Unity editor !
All elements will move with a procedural way, so no need to add bones for everything !

Because it's shader based, it's really fast !
Because you don't have time to waste, it's super easy to use !

* Add a single component.

+ Paint what you want to see moving !

» Add sensors and set motion properties
» Hit play and enjoy !

All parts will follow the mouvement of the mesh !
Compatible with more than 80 Unity builtin shaders.
Easy to include in your custom shaders.

\Works with static mesh or skinned mesh.

Tested on PC/MAC/iOS/Android/Webplayer

How to use it ? (Tutorial)

The easiest way to learn is to follow a tutorial, let's go!

» First, select your mesh, in this case: the basic capsule.
« Add VertExmotion component (menu->Component->VertExmotion).
VertExmotion panel appears.

: m—]
VertExmotion

Warning!

Object is using default material,
please assign a new material
with a VertExmotion shader

This mesh use the default material, you have to create a new one.
Drag & drop the material on the mesh.

Warning!

material doesn't use
a VertExmotion shader.

Fix material

VertExmotion is a shader based system, the material must use one of the compatible shader.

Press 'Fix material' button or choose a VertExmotion shader in the material list.
The shader is replaced by a compatible one.

Now some help appears in the info panel.

Time to paint !

Paint Settings

* Press the brush icon.
» Set up size, intensity and falloff with sliders.
* Paint on the mesh

_ . ™
VertExmotion

[_|Erase mode (ctrl)

|_|contexual brush settings

Paint all
Unpaint all
Drag & drop paint map |mMNone (T

Export painting data

Create a new mesh reference
including painting data

emplate name
capsule

To restore a template :
drag & drop mesh in MeshFilter

Find mesh reference

Press ctrl to switch to erase mode.

White vertices will be ready for motion.

Black vertices will be static like a standard mesh.
Intensity will affect motion.

You can export painting data as a new mesh. This is very usefull, because you can share painting
information between different prefabs, or save different painting templates.
Exporting as a new mesh will also enable mesh sharing between the instances and optimize memory.

Enter a template name : 'capsule’

Click 'Save as new Mesh'

Now, the new mesh reference is saved in another prefab.

Painting data are linked to this asset, so you don't need t save it again.

Note : To import a reference mesh, drag&drop it from the project window to the import field.

Sensors Settings

e Press sensor icon.
Press 'New motion sensor'
A sensor defines how mesh parts will move.

Vert Exmotion !

iensors list

New motion sensor
Add existing sensor
None (VertExmotionSensor)
Add maoti

iensor Settings

lock your sensor to a gameobject

parent A Capsule c
otion settings :

Amplitude multiplier

Outer max distance

Inner max distance

Inflate

Damping

Bouncing

Remove sensor

Drag the sensor on the top of the mesh.
Green vertices are in sensor range.
Try to change it by draging the yellow square handler.

Blue line is the sensor orientation

Keep it out of the mesh by draging blue circle handler.
Hit the play button.

Move your mesh in sceneview.

That's it! You have made your first jelly capsule!

Now, have a look to these sensor settings

The blue circles define the limits of the
vertices displacement for the current sensor.
The standard mode is based on the Z axis of
the sensor transform.

The 'outer max distance' parameter set the
limit according to the sensor direction, and
the 'inner max distance' parameter set the
opposite side limit.

Outer/Inner max distances

The '3 axis limits' mode is more accurate, you can set the Outer/Inner limits for each axis.

-Sensor Settings
Lock your sensor to a gameobject
Set a bone for skinnedMesh
parent m Q
motion settings :
layer | Al
Distance power
Amplitude multiplier
3 axis limits
Outer max distance
x[0s5 |rfos |
Inner max distance
x[oa o]
Inflate
Damping
Bouncing

t(s)

+FX Settings

+Collider Settin(is

» Try to change settings and move your object.

Parent : the parent of sensor transform (set nearest bone for SkinnedMeshRenderer).
Layer : the layer of the sensor (default : all)

Distance power : The sensor attraction power (default : 1)

Amplitude multiplier : amplify or reduce the motion amplitude.

Outer max distance : max vertex displacement in the sensor direction

Inner max distance : max vertex displacement in the opposite of sensor direction.
Inflate : inflate vertices from sensor position.

Damping : increase to stabilise motion.

Bouncing : increase to amplify bounce.

t(s) : change curve time for visualisation only.

-FX Settings

Gravity infout
X |0

Local offset
w0

World offset
X |0

Gravity in/out : gravity (Physics.gravity) applied on vertices.
Local offset : translation offset in sensor space.
World offset : translation offset in world space.

Sensor's Link

Each sensors can be linked to the next one in the list. The link behavior is activated/deactivated by pressing
the link icon . 7

VertExmotion

VertExmotion 3
VertExmotion Sensor
| Mew sensar |
Add existing sensor
MNone (Vert Exmotic @ @ Add

[Show gradient

-Sensor Settings

Lock your sensor to a gameobject
Set a bone for skinnedMesh

parent m @
otion settings :

layer | all
Distance power

Amplitude multiplier

3 axis limits

Outer max distance
Inner max distance
Inflate

Damping

When two sensors are linked, all the vertices included in the range of the capsule (dual-sphere) will
receive the motion data. The deformation informations are merged according to distance of the two
Sensors.

The sensor order can be modified with the up and down buttons

How to setup the collision system ?

Collision Zone

Each sensor can interact with physics by adding some collision zones.

VertExmotion

New motion sensaor
Add existing sensor
None (VertExmotionSensaor) o]

+S5ensor S‘ettin(is

-Collider Settings
layer mask
ez | delete |
pasition

»ia Y0 Z |0
radius 0.50007 02

Add collision zone |

Remove collider

Show in Inspector

|
|
Delete sensor |

Remowve sensor

Click on 'collider settings'

Press 'Add Collider'

Set the physics layer mask to collide with.

Add a new collider zone.

Change the position and the radius.

Add other collision zones to suit the mesh surface.

If the mesh has already a physic collider
(SphereCollider, BoxCollider...), collision
zones must be larger than collider area.

Collider Settings

The collider settings define how the deformations will be applied when a collision is detected.

-Collider Settings
layer mask

Smooth callision

Mo backward collisions
Maximize Collision
Wobble

Friction

Damping

Bouncing

Lirnit

Unscaled time
Time scale

Layer mask : Only the physics colliders in the defined layers will be activated.

Smooth collision : Smooth the motion system for a better animation.

No backward collisions: Disable collisions according to the sensor orientation.

Maximize collision : Use the maximum area of the collision zone. Disable this parameter for
using only the half sphere for detecting collisions.

Wobble : Add a procedural animation after collisions.

Wobble parameters :

Friction : increase it to add a friction factor when a collision is detected.
Damping : increase it to stabilise the motion.

Bouncing : increase it to amplify the bounce.

Limit : the maximum bouncing value.

How! to setup the sensor s layelis

There's 3 layers of painting data on a mesh, this provide a way to avoid
some sensors to overlap on unwanted mesh parts.

You can paint on an individual layer by selecting the layer id in the
dropbox, or paint on all the layers at the same time by selecting ‘All'. Brush settings

\When the painting information are done, each sensor can be assign to
one layer, or to all the layers. intensity : 1

alloff: 1

_|Erase mode (ctrl)

|_|contexual brush settings

Fill all layers

| Clear all layers

Drag & drop paint map | m/None (T

In the following case, the paint informations are not available on the 3™ layers,
the sensor should be assign to '1' or ‘All".

ettings
sensor to a gameobject
Set a bone for skinnedMesh
parent m @
otion settings :
layer
Amplitude multiplier
Quter max distance
Inner max distance
Inflate
Damping
Bouncing

Show in Inspector

Delete sensor

Remowe sensor

-Sensor Settings
Lock your sensor to a gameobject
Set a bane for skinnedMesh

parent L Trunk3 (Transfor| @

otion settings :
layer

Amplitude multiplier
Outer max distance
Inner max distance
Inflate

Damping

Bouncing

Show in Inspector

Delete sensor

Remove sensor

How! to impoiit paint datal from a map

Sometime painting on a mesh is very difficult, importing a texture for painting data is a real time saver.

VertExmotion
L

Brush settings

Size : 0.2

Intensity : 1

Falloff : 1

[JErase mode (ctrl)
[Jeontexual brush settings

[Paint all
| Unpaint all

Drag & drop paint map |[MZombie

Faint map must be readable

texture inspector settings :
- Texture Type : Advanced
- Enable Read/Write

Muvi [Juvz

| Paint from map

Here a tutorial :

Create a copy of the diffuse map.

Open it in your favorite software (photoshop, gimp...)

create a black layer with 50% alpha.

paint a white mask for softbody parts.

Set layer to 100% alpha (only mask is visible)

Save it in the unity project

Select image file in Project panel.

In the inspector panel set 'Texture type' to Advanced’

Check 'Read/Write Enabled’
Select VertExmotion object

Open Paint panel

Drag & drop paint map

Select you UV channel (UV1 by default)
Click ‘Paint from map'

| |
Normal correction

\When the vertices move, the normal could change according to the new face orientation. To enable the
normal correction you have to set the correction parameter to 1, if there's some visual artefacts, you can
decrease the value to fix them.

The smooth parameter define a threshold for smoothing normals according to the distance from the sensor
position.

Mormal correction

Correction ——————————————

Smooth — ———

r,;

How to share sensors between mesh ?

If you want to share a sensor between different meshes, you can add an existing sensor instead of creating
@ new one. The Vertexmotion components will share sensors settings. This is usefull if you want to
synchronize the body deformation with clothes.

How to include VertExmotion in my custom shader ?

First, copy your shader in another file.
Change the name of the shader to 'VertExmotion/shadername’ for editor compatibility.

» For surface shader you have to modify these lines in your shader :

#pragma surface surf Lambert alpha vertex:vert addshadow
#include "Assets/VertExmotion/Shaders/VertExmotion.cginc"
void vert (inout appdata_full v) {VertExmotion(v);}

If your shader has already a vertex function, add theses lines :

#include "Assets/VertExmotion/Shaders/VertExmotion.cginc"
void vert (inout appdata_full v) {

VertExmotion(v);

//original shader code

If the vertex function don't use appdata_full add theses lines :

#include "Assets/VertExmotion/Shaders/VertExmotion.cginc"
void vert (inout appdata v) {
v.vertex = VertExmotion(v.vertex, v.color);
//original shader code

How to include VertExmotion in Unity Shader Graph

The VertExmotion package include built-in nodes for Unity Shader Graph.
Unpack the file 'VertExmotion/Addon/VertExmotion_ShaderGraph_X_Nodes'.

ShaderGraph 3.X :
- Add the nodes 'VertExmotion' and 'VertExmotion Init'

VertExmotion Init

Init{1) @& VertExmotion PER Master
L
@ Init(1) Pasition(3)

Albedo(3)

Object Space »=-=0 Position(3)

®

-=0
® Vertex Color(4) r oe == MNormal(3)
Vertex Color / T -—C Emission(3)
Out4) ® == Metallic(1)

L -

-

-

O

Smoathness(1)
Ocelusion(1)

Alpha(1)
AlphaClipThreshold(1)

W

ShaderGraph 4.X :
- Drag & drop the VertExmotion Subraph (VertExmotion/Editor/ShaderGraph/)

VertExmotion_SubGraph (sub)

Dutput 1(4) @

PER Master

Position(3)
Albedo(3)
Mormal(3)
Emission{3)
Metallic(1)

Smoothmess(1)

How to include VertExmotion inf Amplify Shader Editor

The VertExmotion package include built-in nodes for ASE.

- Unpack the file 'VertExmotion/Addon/VertExmotion_AmplifyShaderEditorNodes'.
- Open your shader within the ASE window.

- Set the Vertex Output to 'Relative' in the general section.

- Add the VertExmotion include file in the 'Additional Directives' section.

Additional Directives +1-]

Include ¢ Assets/VertExmotion/Shaders/NertExmotion.cgine €3 &

- The new node category 'VertExmotion' is available.
- Drag & drop the VertExmotion node.
- Connect it to the 'Local Vertex Offset' input.

VertExmotion e
e
—

If you're using tessellation or other nodes that modify the 'local Vertex Offset', you can use the advanced
version.

Ambient Cccusion
= \Vertex Position w Transmission
Translucency

Vertex Color w

RGBA 3

VertExmotion (Advanced NC)

Vertex Normal w : e i
ertex position ertex Offset = Local Wertex Offset

4 ertex color ertex Normal ———— Local Wertex Normal

ertex normal Tessellation
Vertex Tangent w | *]

ertex I'||'|-;|’.'|'|t E'Ti.ll':l

Official ASE documentation :

http://wiki.amplify.pt/index.php?title=Unity_Products:Amplify_Shader_Editor/Manual#VertExmotion

The normal correction node for LWRP and HDRP require the world normal and the world tangent.

Base
(SubShader 0 Pass 0)

l World Position ¥

Y

Vertex Color ¥

VertExmotion (HD & LW RP NC)

Vertex Normal ¥ orld tangent
Object To World

Vertex Tangent ¥

Y
7] Object To World ¥

How to use the HDRP/Lit shader

The package includes a compatible version of the '"HDRP/Lit' shader in the 'Addon' folder.

Choose the latest version compatible with your version of Unity and extract the package.

Now you can update the shader of the material by using the 'Fix material' button, or by modifing the
shader manually (VertExmotion/HDRP/Lit).

[The material requires a specific displacement mode :

- Select the material
- Select the 'Surface option' panel in the inspector
- Set the displacement mode to 'Vertex displacement'

¥ Surface Options
Surface Type Opague
Rendering Pass Default
Alpha Clipping
Double-Sided
Material Type Standard
Receive Decals
Receive 55R
Geometric Specular
Displacement Mode Vertex displacement
Lock With Object { v
Lock With Height I

How tolinclude VertExmotion in Shader fiorige

Select] World Pos. i.] ; ’
¥ Shader Settings | Opacity Clip

e T) | Refraction
Path |VertExmotion/ShaderForge ' Function name: L

R e e, I ;
Fallback | Pi] i VertExmotion | | outline Width

Gutline Colo
Loo |0

[_|allow using atla eturn VertExmotionSF{xyz,w,c); | |Out| 1| Vertex offset

Displacement
Vertex Color sl
[| Tessellation

[- |[Assets/VertExmotion/Shaders/VertExmotion

(4]

- Open the shader in shaderForge editor.

- in shader Settings, set the path to 'VertExmotion/ShaderName' (ex : 'VertExmotion/ShaderForge/testl')
- Add a new CG include line : 'Assets/VertExmotion/Shaders/VertExmotion.cginc'

- Add a code node 'VertExmotion'

- copy the code :

return VertExmotionSF(xyz, w, ¢);

- set output to 'Float3'

- add an input 'Float3' : xyz
- add an input 'Float' : w

- add an input 'Float3' : ¢

- add a Vertex Color node
- plug the RGB output to ¢
- plug the VertExmotion node to 'Vertex Offset'

How to include VertExmotion to Allo

Alloy 1.3.6 includes an official support to VertExmotion.
- Open the file 'Alloy/Shaders/Config.cginc'

- Uhcomment :
#define A_USE_VERTEX_MOTION

#include "Assets/VertExmotion/Shaders/VertExmotion.cginc"

- Reimport the 'Alloy/Shaders' folder

How to convert a complex shader

Some shader are more complex than others, the method to convert them is always the same :
- Create a copy of the shader file

- Add the path 'VertExmotion/' to the name

- Find the vertex program or create it if not found.

The vertex program can be found in the surface shader by looking at the line
#pragma surface ... vert:VertExFunctionName ...

If the shader is a vertex/fragment program, look at the line
#pragma vertex VertExFunctionName

In the complex shaders, the vertex function could be included in a .cginc file,
in this case, you'll have to :
- duplicate the cginc file (ex : shaderCore.cginc -> shadercore-VM.cginc)
- add the VertExmotion.cginc at the top of the file
- include the VertExmotion function in all the vertex program
- rename the include file in the shader ('#include "shaderCore-VM'.cginc")

- Add the line '#include "Assets/VertExmotion/Shaders/VertExmotion.cginc” ' at the top of the vertex function or
at the top of the cginc file.

- Insert the VeertExmotion function vertex program.

Do this for all the vertex program of the shader.

- Find the vertex program used in the shader,
look at this line :
#pragma vertex pss_vert

#include "./PrelntegratedSkinShaderCore.cginc"

- The Vertex program is located in 'PreIntegratesSkinShaderCore.cginc' (pss_vert)
Duplicate the file to 'PrelntegratesSkinShaderCore-VM.cginc', and add the vertExmotion function

PSS_V2F pss_vert(PSS_VIN v) {
PSS_V2F o;
VertExmotion(v);
UNITY_INITIALIZE_OUTPUT(PSS_V2F,0);

-Add the include file at the top of the cginc file.
#include "Assets/VertExmotion/Shaders/VertExmotion.cginc"

Note : if you want to move VertExmotion folder location, you can copy 'VertExmotion.cginc'in the shader
folder and change the line to : '#include "VertExmotion.cginc"

- Duplicate the shader file to 'PrelntegratedSkinShaderStandard-VM.shader and add "VertExmotion/" at the
begining of the name

- Change the input structure in 'PrelntegratedSkinShaderStandard.shader’,
VertExmotion function require the 'appdata_full' structure
//#define PSS_VIN appdata_tan
#define PSS_VIN appdata_full
- Change all the '#include "./PrelntegratedSkinShaderCore.cginc"
--> '#include "./PrelntegratedSkinShaderCore-VM.cginc"

- Modify the shadow pass at the end of the shader file.
Use a VertexMotion pass to enable shadow deformation

// Shadow pass.
//SubShader { UsePass "VertexLit/SHADOWCASTER" }
SubShader{ UsePass "VertExmotion/Standard/SHADOWCASTER" }

UBER Shader

- Rename "UBER_StandardCore.cginc” to "UBER_StandardCore-original.cginc"
- Duplicate "UBER_StandardCore-original.cginc" to "UBER_StandardCore-VM.cginc"
- Create a new file "UBER_StandardCore.cginc" and copy :

#define VERTEXMOTION

#ifdef VERTEXMOTION
#include "assets/VertExmotion/Shaders/VertExmotion.cginc"
#define VERTEXMOTION_FUNC(v) v.vertex = VertExmotion(v.vertex,v.color);
#include "UBER_StandardCore-VM.cginc"
#else
#include "UBER_StandardCore-original.cginc"
#endif

- Edit "UBER_StandardCore-VM.cginc"
- Find the functions 'vertForwardBase', 'vertForwardAdd', 'vertDeferred' and 'vert_meta'
- Add 'VERTEXMOTION_FUNC(v)' at the beginning of each function

VertexOutputForwardBase vertForwardBase (VertexInput v)

{
VERTEXMOTION_FUNC(V)

- Rename "UBER_StandardShadow_Tessellation.cginc"
to "UBER_StandardShadow_ Tessellation-original.cginc"
- Duplicate "UBER_StandardShadow_Tessellation-original.cginc"
to "UBER_StandardShadow_Tessellation-VM.cginc"
- Create a new file "UBER_StandardShadow_Tessellation.cginc" and copy :

#define VERTEXMOTION

#ifdef VERTEXMOTION
#include "assets/VertExmotion/Shaders/VertExmotion.cginc"
#define VERTEXMOTION_FUNC(v) v.vertex = VertExmotion(v.vertex,v.color);
#include "UBER_StandardShadow_Tessellation-VM.cginc"
#else
#include "UBER_StandardShadow_Tessellation-original.cginc"
#endif

- Edit "UBER_StandardShadow_Tessellation-VM.cginc"
- Find the functions 'vertShadowCaster' and 'vertPierceable'
- Add 'VERTEXMOTION_FUNC(v)' at the beginning of each function

void vertShadowCaster (VertexInput v,
#ifdef UNITY_STANDARD_USE_SHADOW_OUTPUT_STRUCT
out VertexOutputShadowCaster o,
#endif
out float4 opos : SV_POSITION)

VERTEXMOTION_FUNC(v)
- Change the type appdata_base' to appdata_full' in the vertPierceable' parameters
v2fPierceable vertPierceable(

appdata_full v

){

VERTEXMOTION_FUNC(Vv);

— Reimport the 'shaders' folder to apply the modifications

Poiyomi Toon Shader

- Edit the file "_PoiyomiToonShader/Shaders/Includes/PoiVert.cginc"

- Add the line : #include "Assets/VertExmotion/Shaders/VertExmotion.cginc"

- Change the input structure from 'appdata’ to 'appdata_full' (required for VertExmotion)
- Add the VertExmotion function : VertExmotion(v);

- Reimport the folder "_PoiyomiToonShader/Shaders"

#ifndef POIVERT
#define POIVERT

#include "Assets/VertExmotion/Shaders/VertExmotion.cginc"

v2f vert(appdata_full v)
{

VertExmotion(v);

v2f o;

UNITY_SETUP_INSTANCE_ID(v);
UNITY_INITIALIZE VERTEX_OUTPUT_STEREO(0);
UNITY_TRANSFER_INSTANCE_ID(v, 0);

You can access to all the VertExmotion settings in a custom script. You'll be able to create custom FX for
your specific needs.

For using VertExmotion in a custom script, you have to add the namespace : 'Kalagaan'.

Here a sample :

using System.Collections;
using System.Collections.Generic;

public class VertExmotionDocSample : MonoBehaviour {
public VertExmotion m_vtm;
void Start() {

m_vtm = GetComponent<VertExmotion>();

VertExmotionSensorBase newSensorl = m_vtm.CreateSensor("My sensor 1");

m_vtm.AddSensor(newSensorl);

VertExmotionSensorBase newSensor2 = m_vtm.CreateSensor("My sensor 2 linked");
m_vtm.AddSensor(newSensor2, true);

m_vtm.UnLink(newSensor2);
m_vtm.Link(newSensor2);

m_vtm.RemoveSensor(newSensor2);

m_vtm.ResetMotion();

m_vtm.IgnoreFrame();

void Update () {
if (m_vtm == null)

return;

for (int i = @; i < m_vtm.Sensors.Count; ++i)

{

m_vtm.Sensors[i].m_envelopRadius = 2f;

VertExmotionSensor.Parameter sensorParam = m_vtm.Sensors[i].m_params;

sensorParam.inflate = 1f;
sensorParam.power = 2f;
sensorParam.scale = new Vector3(1f, 2f, 1f);

sensorParam.bouncing = 1f;
sensorParam.damping = 1f;

sensorParam.translation.amplitudeMultiplier = 1f;
sensorParam.translation.localOffset = Vector3.up; //local transformation
sensorParam.translation.worldOffset = Vector3.right; // world transformation

sensorParam.rotation.angle = Mathf.Sin(Time.time) * 360f;
sensorParam.rotation.axis = Vector3.forward;

Have a look to the demos included in the package, some of them uses custom scripts.

The full API is available here : www.kalagaan.com/VertExmotion/API

Third

Global Snow (by Kronnect)
https://assetstore.unity.com/packages/slug/79795

Alloy (by RUST LTD)
https://assetstore.unity.com/packages/vfx/shaders/11978

Amplify Shader Editor
https://assetstore.unity.com/packages/tools/visual-scripting/68570

Toony Color pro 2 (by Jean MORENO)
https://assetstore.unity.com/packages/vfx/shaders/8105

More Informations About VertExmotion

Unity forum : http.//forum.unity3d.com/threads/vertexmotion-released.277294

Youtube : https.//www.youtube.com/channel/UCiaTcE4YXUOTZKOXi-VM8vQ

Email for support : contact@kalagaan.com

http://forum.unity3d.com/threads/vertexmotion-released.277294/

	What is VertExmotion?
	How to use it ? (Tutorial)
	Paint settings
	Sensors settings
	Sensor's link

	How to setup the collision system ?
	Collision zone
	Collider settings

	How to setup the sensor's layers
	How to import paint data from a map
	Normal correction
	How to share sensors between mesh ?
	How to include VertExmotion in my custom shader ?
	How to include VertExmotion in Unity Shader Graph
	How to include VertExmotion in Amplify Shader Editor
	How to use the HDRP/Lit shader
	How to include VertExmotion in Shader forge
	How to include VertExmotion to Alloy
	How to convert a complex shader
	Tutorials for complex shaders
	Preintegrated skin shader
	UBER shader
	Poiyomi Toon Shader

	How to use the VertExmotion API
	Third party compatible assets
	Support
	More informations about VertExmotion

